Lifted flow cover inequalities for mixed 0-1 integer programs

نویسندگان

  • Zonghao Gu
  • George L. Nemhauser
  • Martin W. P. Savelsbergh
چکیده

We investigate strong inequalities for mixed 0-1 integer programs derived from flow cover inequalities. Flow cover inequalities are usually not facet defining and need to be lifted to obtain stronger inequalities. However, because of the sequential nature of the standard lifting techniques and the complexity of the optimization problems that have to be solved to obtain lifting coefficients, lifting of flow cover inequalities is computationally very demanding. We present a computationally efficient way to lift flow cover inequalities based on sequence independent lifting techniques and give computational results that show the effectiveness of our lifting procedures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifted Inequalities for 0 − 1 Mixed - Integer Bilinear Covering Sets ∗

4 In this paper, we study 0−1 mixed-integer bilinear covering sets. We derive several families of facet5 defining inequalities via sequence-independent lifting techniques. We then show that these sets have 6 polyhedral structures that are similar to those of certain fixed-charge single-node flow sets. As a result, we 7 obtain new facet-defining inequalities for these sets that generalize well-k...

متن کامل

Lifted Cover Inequalities for 0-1 Integer Programs: Computation

We investigate the algorithmic and implementation issues related to the eeective and eecient use of lifted cover inequalities and lifted GUB cover inequalities in a branch-and-cut algorithm for 0-1 integer programming. We have tried various strategies on several test problems and we identify the best ones for use in practice. Branch-and-cut, with lifted cover inequalities as cuts, has been used...

متن کامل

Lifted Cover Inequalities for 0-1 Integer Programs: Complexity

We investigate several complexity issues related to branch-and-cut algorithms for 0-1 integer programming based on lifted cover inequalities (LCIs). We show that given a fractional point, determining a violated LCI over all minimal covers is NP-hard. The main result is that there exists a class of 0-1 knapsack instances for which any branch-and-cut algorithm based on LCIs has to evaluate an exp...

متن کامل

Cover and Pack Inequalities for (Mixed) Integer Programming

We review strong inequalities for fundamental knapsack relaxations of (mixed) integer programs. These relaxations are the 0–1 knapsack set, the mixed 0–1 knapsack set, the integer knapsack set, and the mixed integer knapsack set. Our aim is to give a common presentation of the inequalities based on covers and packs and highlight the connections among them. The focus of the paper is on recent re...

متن کامل

Lifted Cover Inequalities for Integer Programs Computation

We investigate the algorithmic and implementation issues related to the e ective and e cient use of lifted cover inequalities and lifted GUB cover inequalities in a branch and cut algorithm for integer programming We have tried various strategies on several test problems and we identify the best ones for use in practice

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 85  شماره 

صفحات  -

تاریخ انتشار 1999